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LOSS MODELS: FROM DATA TO DECISIONS
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5.3 Selected Distributions and Their Relationships

5.3.1 Introduction

There are many ways to organize distributions into groups. Families such as Pearson (12
types), Burr (12 types), Stoppa (5 types), and Dagum (11 types) are discussed in Chapter
2 of [69]. The same distribution can appear in more than one system, indicating that there
are many relations among the distributions beyond those presented here. The systems
presented in Section 5.3.2 are particularly useful for actuarial modeling because all the
members have support on the positive real line and all tend to be skewed to the right.
For a comprehensive set of continuous distributions, the two volumes by Johnson, Kotz,
and Balakrishnan [63, 64] are a valuable reference. In addition, there are entire books
devoted to single distributions (such as Arnold [6] for the Pareto distribution). Leemis and
McQueston [78] present 76 distributions on one page, with arrows showing all the various
relationships.

5.3.2 Two Parametric Families

As noted when defining parametric families, many of the distributions presented in this
section and in Appendix A are special cases of others. For example, a Weibull distribution
with 7 = 1 and 6 arbitrary is an exponential distribution. Through this process, many of
our distributions can be organized into groupings, as illustrated in Figures 5.2 and 5.3. The
transformed beta family includes two special cases of a different nature. The paralogistic
and inverse paralogistic distributions are created by setting the two nonscale parameters of
the Burr and inverse Burr distributions equal to each other rather than to a specified value.

5.3.3 Limiting Distributions

The classification in Section 5.3.2 involved distributions that are special cases of other
distributions. Another way to relate distributions is to see what happens as parameters go
to their limiting values of zero or infinity.

B EXAMPLE 5.10

Show that the transformed gamma distribution is a limiting case of the transformed
beta distribution as  — co, ® — oo, and 6/ allr - &, a constant.




8.4.1 Exercises

8.14 Determine the effect of 10% inflation on a policy limit of 150,000 on the following
distribution. This is the same distribution as used in Exercises 8.1 and 8.6.

0, x <0,
Fy(x) =

1= 0.3e—0.00()01x, x> 0.

8.15 (*) Let X have a Pareto distribution with « = 2 and & = 100. Determine the range
of the mean excess loss function e(d) as d ranges over all positive numbers. Then, let
Y = 1.1X. Determine the range of the ratio ey (d)/ey(d) as d ranges over all positive
numbers. Finally, let Z be X right censored at 500 (i.e. a limit of 500 is applied to X).
Determine the range of e ,(d) as d ranges over the interval 0 to 500.

8.5 Coinsurance, Deductibles, and Limits

The final common coverage modification is coinsurance. In this case, the insurance
company pays a proportion, «, of the loss and the policyholder pays the remaining fraction.
If coinsurance is the only modification, this changes the loss variable X to the payment
variable, Y = aX. The effect of multiplication has already been covered. When all
four items covered in this chapter are present (ordinary deductible, limit, coinsurance, and
inflation), we create the following per-loss random variable:

0, <4
S
Yl =3a1(1 + 1) X —d], <x <t
1+r 1+r

+
a(u—d), X 2

1+

For this definition, the quantities are applied in a particular order. In particular, the
coinsurance is applied last. For the illustrated contract, the policy limit is a(u — d), the




maximum amount payable. In this definition, u is the loss above which no additional
benefits are paid and is called the maximum covered loss. For the per-payment variable,
Y is undefined for X < d /(1 +r).

Previous results can be combined to produce the following theorem, presented without
proof.

Theorem 8.7 For the per-loss variable,

E(YL) = a(l +7) [E(XA I_L:_r)—E(X/\ lir)].

The expected value of the per-payment variable is obtained as

Higher moments are more difficult. Theorem 8.8 gives the formula for the second
moment. The variance can then be obtained by subtracting the square of the mean.

Theorem 8.8 For the per-loss variable,

E[YH?] = (1 + r*{E[(X Au*)*] = E[(X A d*)*]
—2d"E(X Au*) 4+ 2d*E(X Ad¥)},

where u* = u/(1 +r) and d* = d/(1 + r). For the second moment of the per-payment
variable, divide this expression by 1 — Fy(d*).

Proof: From the definition of Y £,

YE = a(l+1)[(X Au*) — (X Ad¥)]

and, therefore,

rty

TR = [(X Au™) = (X Ad)]

=X AU+ (X Ad? =2(X Au')X AdY)
= (X AU = (X Ad*)Y =2(X Ad[(X Au™) = (X Ad¥)].

The final term on the right-hand side can be written as
2X AdH(X Au™) = (X Ad™)] =2d*[(X Au™) — (X AdP)].
To see this, note that when X < d*, both sides equal zero; when d* < X < u*, both

sides equal 2d*(X — d*); and when X > u*, both sides equal 2d*(u* — d*). Make this
substitution and take expectations on each side to complete the proof.? ]

2Thanks to Ken Burton for providing this improved proof.




9.3.2 Stop-Loss Insurance

It is common for insurance to be offered in which a deductible is applied to the aggregate
losses for the period. When the losses occur to a policyholder, it is called insurance
coverage, and when the losses occur to an insurance company, it is called reinsurance
coverage. The latter version is a common method for an insurance company to protect
itself against an adverse year (as opposed to protecting against a single, very large claim).
More formally, we present the following definition.

Definition 9.3 Insurance on the aggregate losses, subject to a deductible, is called stop-
loss insurance. The expected cost of this insurance is called the net stop-loss premium
and can be computed as E[(S —d) |, where d is the deductible and the notation (-), means

to use the value in parentheses if it is positive and to use zero otherwise.

For any aggregate distribution,

E[(S —d),] =/d [l — Fg(x)]dx.

If the distribution is continuous for x > d, the net stop-loss premium can be computed
directly from the definition as

E[(S =d),] =/d (x —d) fs(x)dx.

Similarly, for discrete random variables,

E[(S —d),]1= ) (x = d)f5(x).

x>d

Any time there is an interval with no aggregate probability, the following result may
simplify calculations.

Theorem 9.4 Suppose that Pr(a < S < b) = 0. Then, fora < d < b,

EICS — d),] = 2= BI(S — a), ]+ S=CEI(S — b))

b—a




INTRODUCTION TO LIMITED
FLUCTUATION CREDIBILITY

16.1 Introduction

Credibility theory is a set of quantitative tools that allows an insurer to perform prospective
experience rating (adjust future premiums based on past experience) on a risk or group of
risks. If the experience of a policyholder is consistently better than that assumed in the
underlying manual rate (sometimes called the pure premium), then the policyholder may
demand a rate reduction.

The policyholder’s argument is as follows. The manual rate is designed to reflect the
expected experience (past and future) of the entire rating class and implicitly assumes that
the risks are homogeneous. However, no rating system is perfect, and there always remains
some heterogeneity in the risk levels after all the underwriting criteria are accounted for.
Consequently, some policyholders will be better risks than that assumed in the underlying
manual rate. Of course, the same logic dictates that a rate increase should be applied to
a poor risk, but in this situation the policyholder is certainly not going to ask for a rate
increase! Nevertheless, an increase may be necessary, due to considerations of equity and
the economics of the situation.




The insurer is then forced to answer the following question: How much of the
difference in experience of a given policyholder is due to random variation in the underlying
claims experience and how much is due to the fact that the policyholder really is a better
or worse risk than average? In other words, how credible is the policyholder’s own
experience? Two facts must be considered in this regard:

1. The more past information the insurer has on a given policyholder, the more credible
is the policyholder’s own experience, all else being equal. In the same manner, in
group insurance the experience of larger groups is more credible than that of smaller
groups.

. Competitive considerations may force the insurer to give full (using the past experience
of the policyholder only and not the manual rate) or nearly full credibility to a given
policyholder in order to retain the business.

Another use for credibility is in the setting of rates for classification systems. For
example, in workers compensation insurance, there may be hundreds of occupational
classes, some of which may provide very little data. To accurately estimate the expected cost
for insuring these classes, it may be appropriate to combine the limited actual experience
with some other information, such as past rates, or the experience of occupations that are
closely related.

From a statistical perspective, credibility theory leads to a result that would appear
to be counterintuitive. If experience from an insured or group of insureds is available,
our statistical training may convince us to use the sample mean or some other unbiased
estimator. But credibility theory tells us that it is optimal to give only partial weight to this

experience and give the remaining weight to an estimator produced from other information.
We will discover that what we sacrifice in terms of bias, we gain in terms of reducing the
average (squared) error.

Credibility theory allows an insurer to quantitatively formulate the problem of combin-
ing data with other information, and this part provides an introduction to this theory. This
chapter deals with limited fluctuation credibility theory, a subject developed in the early
part of the twentieth century. This theory provides a mechanism for assigning full (Section
16.3) or partial (Section 16.4) credibility to a policyholder’s experience. The difficulty with
this approach is the lack of a sound underlying mathematical theory to justify the use of
these methods. Nevertheless, this approach provided the original treatment of the subject
and is still in use today.

A classic paper by Biihlmann in 1967 [19] provides a statistical framework within
which credibility theory has developed and flourished. While this approach, termed
greatest accuracy credibility theory,! was formalized by Biihimann, the basic ideas
had been around for some time. This approach is introduced in Chapter 17. The simplest
model, that of Biihlmann [19], is discussed in Section 17.5. Practical improvements were
made by Biihlmann and Straub in 1970 [21]. Their model is discussed in Section 17.6. The
concept of exact credibility is presented in Section 17.7.

'The terms limited fluctuation and greatest accuracy go back at least as far as a 1943 paper by Arthur Bailey [8].




